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Abstract—Edge devices have typically been used for DNN in-
ferencing. The increase in the compute power of accelerated edges
is leading to their use in DNN training also. As privacy becomes a
concern on multi-tenant edge devices, Docker containers provide
a lightweight virtualization mechanism to sandbox models. But
their overheads for edge devices are not yet explored. In this
work, we study the impact of containerized DNN inference and
training workloads on an NVIDIA AGX Orin edge device and
contrast it against bare-metal execution on running time, CPU,
GPU and memory utilization, and energy consumption. Our
analysis provides several interesting insights on these overheads.

I. INTRODUCTION

Edge devices such as the Raspberry Pi, Intel Movidius and
Google Coral have typically been used to perform lightweight
vision-based DNN inferencing tasks in autonomous vehicles
and smart city deployments. However, training on the edge is
growing popular for two reasons. First is the advent of GPU-
accelerated edge devices such NVIDIA Jetsons that approach
GPU workstations in compute power [1]. E.g., the recent
AGX Orin features a 12-core ARM CPU, an Ampere GPU
with 2048 CUDA cores and 64 tensor cores, and 32GB
of shared RAM. This delivers 275 TOPS of compute that
matches an RTX 3080 Ti desktop GPU, while being smaller
than a paperback novel and operating within 60W of power.
Second, is the growing attention to data privacy and the rise
of federated learning that trains DNN models on local data
present on the edge, with only model weights sent to the
server [2].

As the capabilities of edge devices increase, they are
deployed as infrastructure compute resources, e.g., in smart
cities, with the provision for multi-tenancy. This requires them
to sandbox the DNN application, be it training or inferencing,
from the host for privacy and security, and eventually from
other concurrent applications [3]. Virtualization and container-
ization are two common techniques for such application pack-
aging and sandboxing. Among these, Docker containers [4]
offer a lightweight means to balance isolation and efficiency.
While Docker is common in servers and workstations and its
performance impact studied in detail, there are few investiga-
tions on the edge [5], [6], especially for training.

The unique features of Jetson edge devices, such as ARM-
based CPUs, shared RAM between CPU and GPU, several
power modes that control CPU, GPU and memory frequencies,
and the lack of support for GPU partitioning across containers
make them distinct from GPU servers and workstations. This,
coupled with their more modest relative performance, makes it

necessary to thoroughly examine the overheads of container-
ized DNN training and inference on accelerated edges.

In this paper, we make the following specific contributions:

1) We conduct detailed experiments on the NVIDIA Jetson
Orin AGX devices for 3 representative DNN model–
dataset combinations for training and inference using
Docker containers and bare-metal.

2) We characterize the overheads of containerization on the
running time, resource usage and energy consumption for
DNN training and inference.

3) We investigate and isolate the sources of the overheads
for the DNN models with different computational charac-
teristics by studying various power modes on the device.

Our insights can help users make informed design choices
to configure edge devices and select appropriate workloads.

II. BACKGROUND

A. DNN training and inference pipeline

A generic DNN training pipeline has 3 stages – fetch, pre-
process and compute. During the fetch phase, a mini-batch of
data is fetched from disk to main memory. Then pre-processing
happens on the CPU, where operations such as transformation
or crop are done. Finally, the forward pass, backward pass and
parameter update computation are done on the GPU. Training
is run over all minibatches in an epoch, and several epochs
are executed till convergence. In a typical inference pipeline,
data may arrive continuously over the network and be grouped
into a fixed-size batch in-memory, before it is pre-processed
on the CPU and the inference computation, i.e., the forward
pass, happens on GPU.

B. Docker containers

Docker [4] is a popular containerization platform that pro-
vides a convenient method to package and deploy an applica-
tion and its dependencies. Docker containers share the device’s
operating system kernel, which makes them more lightweight
than virtual machines. Containers use Linux namespaces to
provide isolation between containers, and Linux cgroups to
partition and limit the access of containers to system resources.
Containers are created from a Docker image, which is gen-
erated by executing initialization commands in a Dockerfile.
Docker containers do not need hardware virtualization support.



III. RELATED WORK

A. Virtualization studies on edge devices

A few papers have examined virtualization on diverse edge
devices. Roberto [7] study the performance of Docker on
different Raspberry Pi and Odroid edge devices using various
CPU, network, memory and disk benchmarks. Similarly, Ha-
didi et al. [5] evaluate the performance of containerized DNN
inferencing on several low-end edge devices like the Raspberry
Pi. RPi-class devices are much more constrained than Jetson
devices which have GPU accelerators, faster CPUs and larger
memory. Some studies [6] compare the performance of KVM
and Docker on a Jetson TX2 using compute and network
benchmarks. Divide and Save [8] presents a method to speed
up computations by splitting up DNN inference workloads
among multiple containers on the Jetson TX2 and AGX Orin.
However, they only study CPU based inference and omit the
GPU accelerator, which offers much of the compute power.
None of these consider DNN training on accelerated edges.

B. Virtualization studies on servers and cloud

Xavier et al. [9] characterize the performance of various
container and hypervisor-based virtualization techniques for
HPC using compute, memory, network and disk benchmarks.
Zhang et al. [10] characterize and predict the performance
interference of GPU virtualization in cloud GPUs. It is inter-
esting to note that GPU servers support various multi-tenancy
and GPU partitioning mechanisms such as CUDA MPS (Multi
Process Service) and MIG (Multi-Instance GPU). However,
the Jetson class of edge devices does not support any of these
mechanisms and time-shares the GPU among containers.

To the best of our knowledge, we are the first to perform a
characterization of containerized DNN inference and training
workloads on accelerated edge devices.

IV. EXPERIMENT METHODOLOGY

A. Hardware platform

We perform all our experiments on the Jetson AGX Orin
developer kit [11], NVIDIA’s latest and most powerful ac-
celerated edge device. The AGX Orin has 12 ARM A78AE
CPU cores, an Ampere GPU with 2048 CUDA cores and 32
GB of LPDDR5 RAM shared between the CPU and GPU. Its
peak power is 60W and costs around 2000 USD. It comes
with the OS installed on eMMC (flash based storage) and
supports a variety of other storage media such as Micro SD
card, USB HDD and NVME SSD. The full specifications of
the device can be found in Table I. The AGX Orin offers
a choice of several thousand custom power modes (≈ 18k),
and each power mode can be thought of as a tuple of CPU
cores, CPU frequency, GPU frequency and memory frequency.
Unless otherwise mentioned, we run our experiments in the
MAXN power mode III, where all components are set to
their maximum possible frequencies. Dynamic Voltage and
Frequency Scaling (DVFS) is off, and the onboard fan is set
to maximum speed to avoid any temperature throttling effects.
We use a 250GB NVME Samsung SSD 980 with a sequential

Table I: Specifications of NVIDIA Jetson AGX Orin devkit
Feature AGX Orin

CPU Architecture ARM Cortex A78AE
CPU Cores† 12
CPU Frequency (MHz)† 2200
GPU Architecture Ampere
CUDA/Tensor Cores 2048/64
GPU Frequency (MHz)† 1300
RAM (GB) 32, LPDDR5
Storage Interfaces µSD, eMMC, NVMe, USB
Memory Frequency (MHz)† 3200
Peak Power (W) 60
Price (USD) $1999
Form factor (mm) 110× 110× 71.65
† This is the maximum possible value across all power modes.
Actual value depends on the power mode used

read speed of about 3.5GBps to store the datasets, and this is
exposed to containers as a Docker volume.

B. Software libraries

The AGX Orin runs JetPack version 5.1, which comes
with Linux for Tegra (L4T) r35.2.1, CUDA v11.4.315 and
cuDNN v8.6.0.166. We use PyTorch v2.0 as the training
and inferencing framework with torchvision v0.15.1. We set
the num_workers to 4 in the PyTorch Dataloader to enable
pipelined and parallel data fetch and pre-processing. Docker
version 20.10.21 is used for containerization. We use the
NVIDIA L4T PyTorch container for Jetpack as our base
container image with additional libraries such as jtop for
profiling various metrics. The container image runs the same
JetPack, CUDA and cuDNN versions as the bare-metal. We
also ensure that other libraries have consistent versions across
bare-metal and containers.

C. Models and datasets

We choose three popular computer vision DNN models
which perform image classification tasks for our experi-
ments. These models provide different computational inten-
sities and architectures and are representative of edge work-
loads. LeNet [12] is a simple Convolutional Neural Network
designed to recognize handwritten digits, and we use this with
the MNIST dataset. MobileNet [13] is another lightweight
model designed for mobile devices using hardware-aware
Network Architecture Search techniques, and we use the
MobileNetv3large variant with a subset of the Google Land-
marks Dataset (GLD23k). We also use two Residual Neural
Networks [14] - a smaller variant ResNet-18 for training and
a larger variant ResNet-50 for inference, both with a subset
of the ImageNet dataset. The full details of the models and
dataset are listed in Table II.

D. Performance metrics

We measure and report several system parameters such as
CPU and GPU utilization, RAM usage and power (sampled
every 1s). We use the jtop Python module (a wrapper around
the tegrastats utility from NVIDIA) to measure CPU and
GPU utilization and power. CPU utilization is reported as
the average across all 12 CPU cores, and GPU utilization as
the average across the 2 Graphic Processing Clusters (GPCs).



Table II: DNN Models and Datasets
Model # Layers # Params FLOPS† Dataset # Samples Size on Disk Minibatch Size Used for

LeNet-5 7 [12] 60k 4.4M MNIST 60, 000 46MB 16 Train, Inf
MobileNet v3 20 [13] 5.48M 225.4M GLD23k 23, 080 2.82GB 16 Train, Inf

ResNet-18∗ 18 [14] 11.68M 1.82G ImageNet 50, 000 6.74GB 16 Train
ResNet-50 50 [14] 26M 4G ImageNet 50, 000 6.74GB 16 Inf

† As per the typical practice, FLOPS reported corresponds to a forward pass with minibatch size 1.
∗ We use a smaller ResNet for training to avoid running out of memory
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Figure 1: Avg. minibatch time & total energy for DNN training
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Figure 2: CPU, GPU utilization and power for DNN training

Power measurements are based on the onboard sensors that
capture the module load, and these readings are aggregated
over the runtime of the workload to capture total energy. The
Linux utility free is used to measure used, free and cached
memory. We instrument the PyTorch code to measure fetch
stall, GPU compute and end-to-end times for every training
and inference minibatch. Fetch stall time is the time taken
for fetching and pre-processing data that does not overlap
with the GPU compute, and results in the GPU being idle.
GPU compute time is measured using torch.cuda.event
with synchronize to accurately capture the minibatch’s
execution time on the GPU. We also measure the end-to-
end execution time of the minibatch and report our logging
overhead as the difference between end-to-end time and the
sum of fetch stall and GPU compute times. We have performed
all experiments 2-3 times to ensure reproducibility.

V. RESULTS AND ANALYSIS

A. DNN training

We run each training model on bare-metal and container and
report the average minibatch time, total energy, CPU & GPU
utilization, power and memory usage. Every training workload
is run for at least 3 epochs. LeNet runs very fast, therefore
we run it for 5 epochs to ensure that it runs at least for a few
minutes. ResNet and MobileNet run for 3 epochs. We use a
minibatch size of 16 and SGD as the optimizer for all models
following standard implementations. Our analysis is presented
as a series of takeaways.
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Figure 3: Avg. minibatch time & total energy for DNN inf.
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Figure 4: CPU, GPU utilization and power for DNN inference

1) Lightweight training workloads see a significant increase
in compute time when run in a container as opposed to bare-
metal: In Fig 1a, we report average minibatch time as a
stacked plot of fetch stall, compute time and logging overhead
(minimal, not seen in plots). As seen from the plot, there
is an increase in compute time from bare-metal to container
for all 3 models. For LeNet, the compute time (2nd stack
in the plot) increases from 3.91ms to 6.01ms, an increase of
53.7%. MobileNet sees an increase from 82.12ms to 95.48ms,
which is 16.26%, and ResNet sees an increase from 50.53ms
to 54.24ms, which is 7.34%. In terms of FLOPS (Table II),
LeNet is the most lightweight of the 3, followed by MobileNet
and then ResNet. As can be seen, the increase in compute time
follows the same pattern and is more for lightweight models
LeNet and MobileNet.

2) This increase in compute time is due to CPU overheads
of containerization: In order to localize the source of the
compute increase, we look at violin plots of CPU, GPU
utilization and power reported in Figs 2a, 2b and 2c
respectively. Looking at MobileNet, we see that the median
GPU utilization falls from 90% on the bare-metal to 77%
on the container, indicating that the GPU is spending time
waiting. The lower GPU utilization also causes the median
power for MobileNet to fall slightly from 43.7W to 40.8W
as the GPU is major contributor to power. We also notice
a higher median CPU utilization of 23% on the container
as opposed to 20.67% on bare-metal. This leads us to make
the observation that the CPU is the source of the compute
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Figure 5: Memory footprint for DNN training and inference

overhead. For ResNet, the CPU utilization increase and GPU
utilization decrease follow the same trend but are much less
pronounced, indicating lesser compute overhead. Since LeNet
is a very small model with very low GPU utilization, we do
not observe a difference here. Most of the power for LeNet is
contributed to by the baseload of the system as seen in Fig 2c,
and we don’t see a difference here too.

3) This increase in compute time is further exacerbated
when CPU frequency is lowered using a custom power mode,
confirming that the CPU is the source of the overhead: To
verify that the CPU is indeed the source of the overhead,
we define 3 custom power modes as listed in Table III and
run the training workloads for these 3 power modes apart
from the default power mode (MAXN). Each of the power
modes lowers one of CPU, GPU and memory frequencies
while keeping the others the same as the default power mode.
LeNet and MobileNet container runs show a high sensitivity
to lowering of CPU frequency more than GPU or memory–i.e.
the compute time increases more sharply for container training
when CPU frequency is lowered. In going from power mode
MAXN to PM1_CPU, the compute time for MobileNet on
bare-metal increases from 82.12ms to 91ms, an increase of
10.7%. In contrast, for the container, the increase in compute
time is from 95.4ms to 130ms, which is a much higher
increase of 36.1%. We do not see this with other power modes.
This proves conclusively that there is a CPU overhead of
containerization which affects lightweight models more, and
this effect gets worse if run in a power mode with reduced
CPU frequency.

4) Why the overhead?: To further narrow down the reason
for the CPU overhead, we traced the system calls for Mo-
bileNet training on bare-metal and container using the Linux
strace utility. We observed a larger number of cumulative
system calls for the container. Since this pointed to a system
call related overhead, we ran the container with seccomp
turned off to observe the effect of Docker’s system call
filtering. However, we did not observe any change in runtimes
from the previous experiments. On a parallel track, we added
more fine-grained profiling to the compute phase of the
workload, recording times for forward pass, backward pass and
the parameter update (optimizer.step in PyTorch). This
breakup of the minibatch time is reported in Fig 7. We noticed
that among the three compute steps, the parameter update
using the SGD optimizer sees the most increase from 2.63ms

to 17.63ms, (a 6.7× increase as compared to 11.4% increase
for forward and 4.89% increase for backward), and we are
further investigating this. We also notice that container runs
take longer after adding this fine-grained instrumentation and
this could be due to asynchronous operations being affected by
the torch.synchronize needed for recording the times.

5) Energy consumption of the containerized training work-
load is slightly higher than on bare-metal, more so for
lightweight models: In Fig 1b, we report the energy consumed
by the 3 models for training as a stacked bar plot. The bottom
stack of the bar represents the baseload, which is the energy
it takes for the system to run with no workload. To measure
this, we run only our logging script for 10min on bare-metal
with no workload running. Similarly, we spin up a container
and run the logging script with no workload for 10min. We
scale both these energy values by the runtime of the actual
workload on the bare-metal and container respectively. The
top stack reports the incremental energy spent for training i.e,
energy over and above the baseload that is needed for model
training. Again, we observe that there is an increase in total
energy consumption for containerized training as compared to
bare-metal. This increase is around 48.89% for LeNet, 11.11%
for MobileNet, and 6.84% for ResNet, more significant for
lightweight models.

6) This increase in energy for lightweight models is due to
running for a longer time at a lower GPU utilization: As seen
from Fig 1a, there is an increase in average minibatch time.
The increase in energy is majorly due to the baseload increase
of running for a longer time. For example, for MobileNet, we
see a baseload increase of 30.76% along with an incremental
energy increase of 2.94%. This indicates that running for
longer at a lower GPU utilization is not beneficial i.e, the
power benefits obtained by running at a lower GPU utilization
are outweighed by the energy consumed by running longer.

7) The memory footprint of containerization is minimal for
training workloads: In Fig 5a, we report the memory used
on bare-metal v/s container as a violin plot. We also report
the base memory usage of the system without any workload
running using markers. As expected, we do not observe a
large memory overhead for containers. The median memory
increases from 4.66GB to 4.86GB, an overhead of 0.2GB
for LeNet. Similarly, MobileNet and ResNet see an increase of
0.35GB and 0.15GB respectively. This indicates that multiple
containers can be spun up without incurring a significant
memory overhead even on resource-constrained edge devices.

B. DNN inference

We run each inference model on bare-metal and container
and report the average minibatch time, total energy, CPU
& GPU utilization, power and memory usage. We simulate
the effect of images arriving over the network by running a
Dataloader iteration before the start of the workload and verify
that all images are in memory. Every inference workload is run
for at least a few minutes, and the number of minibatches is
chosen to ensure this. ResNet is run for 6250 minibatches,
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Figure 6: Impact of custom power modes on average minibatch time of DNN training and inference
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Figure 7: Compute time break-up for MobileNet training

MobileNet for 24600 minibatches, and LeNet for 131250
minibatches. Minibatch size is set to 16 for all.

1) Lightweight inference workloads also see an increase in
compute time, but the increase is less significant as compared
to training: In Fig 3a, we report average minibatch time as a
stacked bar plot of fetch stall, compute and overhead times.
We observe that compute time increases by 30.52% for LeNet
and 12.93% for MobileNet. ResNet does not have a noticeable
increase in compute time (less than 1%). This can be explained
by the fact that inference involves only the forward pass, and
the parameter update which caused most of the overhead in
training is not a part of inference workloads. We also perform
experiments with the custom power modes for MobileNet and
report the average minibatch times in Fig 6d. For the power
mode with lowered CPU frequency (PM1_CPU), we observe
that the compute time for the container increases by 33.72%
while for the bare-metal it increases by 24.26% as compared
to MAXN. The compute increase for containerized inference
is lesser compared to training.

2) Correspondingly, the energy increase is also modest for
inference: In Fig 3b, we report the energy consumed by the
3 models for inference as a stacked bar plot of baseload and
incremental energy. The increase in total energy is 18.1%,
6.63% and 2.68% for LeNet, MobileNet and ResNet respec-
tively, which is much lower than in training. This is due to the
lower overheads of compute time in inference. Again, most of
the energy increase comes from the baseload. For instance,
MobileNet sees an increase of 20.03% in the baseload and
0.5% in incremental energy.

3) The memory footprint of Docker for inference is also
minimal: The memory footprint of containerized inference
is higher by 0.19GB, 0.34GB and 0.17GB for LeNet, Mo-
bileNet and ResNet respectively as compared to bare-metal.

Table III: Power Modes Evaluated on AGX Orin

Label CPU Cores CPU MHz GPU MHz RAM MHz
MAXN 12 2201.6 1301 3200

PM1_CPU 12 1497.6 1301 3200
PM2_GPU 12 2201.6 930.75 3200
PM3_MEM 12 2201.6 1301 2133

Cells in bold indicate a value change from the cell in the first row.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we closely examine and characterize con-
tainerized DNN training and inference workloads. We demon-
strate that lightweight DNN models incur overheads in com-
pute time and consequently energy when containerized. These
overheads show up even more in power modes with lower CPU
frequencies. This is relevant to federated learning workloads,
which often involve very lightweight models. In future, we
plan to investigate the effect of containerization when infer-
ence and training are run concurrently, as this is an emerging
usecase of continuous or lifelong learning.
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